6 環・体・イデアル

● 6-1:環と体の定義

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ には和に関して群となっていたが、これらは積という演算を同時にもつ。このように、複数の二項演算をもつような集合を考えよう。

定義 6.1. 集合 R が 環 であるとは、R に和 +、積 · の 2 つの二項演算をもち、以下の条件を満たすときをいう.

- (R1) R は和 + に関してアーベル群である. 和に関する単位元を 0_R で表し、これを R の 零元 と呼ぶ.
- (R2) R の積・は結合法則をみたす. すなわち, 任意の $x, y, z \in R$ に対して, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ を満たす.
- (R3) R の積・に関する単位元 1_R をもつ。すなわち、任意の $x \in R$ に対して、 $x \cdot 1_R = x = 1_R \cdot x$ を満たす 1_R が存在する.
- (R4) R の和 + と積・に関して分配法則を満たす。すなわち、任意の $x,y,z \in R$ に対して、 $x \cdot (y+z) = x \cdot y + x \cdot z$ 、および $(x+y) \cdot z = x \cdot z + y \cdot z$ を満たす。

環 R の積が可換, すなわち任意の $x,y \in R$ に対して $x \cdot y = y \cdot x$ を満たすならば, R は **可換環** と呼ばれる. 環 R が **斜体** であるとは, 以下の条件を満たすときをいう.

(F) 0_R 以外の任意の元 $x \in R$ は積に関する逆元をもつ. すなわち, ある $y \in R$ で $x \cdot y = 1_R = y \cdot x$ を満たすものが存在する.

可換環Rが斜体であるとき,Rを体と呼ぶ. 位数が有限であるような体を有限体と呼ぶ.

環の積 $x \cdot y$ は簡単のためxy と書かれる.

- **例** 6-1 (1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ は通常の和と積に関して環となる. 特に, これらは積に関して可換であるから可換環である. また, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ の 0 以外には積に関する逆元をもつので体である. 一方, \mathbb{Z} は $2 \in \mathbb{Z}$ に対して, 積に関する逆元をもたないので体ではない.
- (2) k = \mathbb{R} または \mathbb{C} であるとする. このとき, $\mathsf{Mat}_n(\mathsf{k})$ は行列の和と積に関して環となる. 行列の積は可換ではないので可換環ではない. $\mathsf{Mat}_n(\mathsf{k})$ を **全行列環** と呼ぶ.
- (3) k = $\mathbb R$ または $\mathbb C$ であるとする.このとき,k[X] を変数 X に関する多項式全体のなす集合とする.このとき, $f(X)=\sum\limits_{i=0}^n a_iX$, $g(X)=\sum\limits_{j=0}^m b_jX\in \mathbf k[X]$ に対して,和と積を以下で定義する. $n\le m$ として, $a_{n+1}=a_{n+2}=\cdots=a_m=0$ とおき,

$$f(x) + g(x) := \sum_{i=0}^{m} (a_i + b_i)X^i, \quad f(X)g(X) := \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j\right)X^k$$

と定義する. 多項式の和と積に関して $\mathsf{k}[X]$ は可換環となる. $\mathsf{k}[X]$ を k 上の **多項式環** と呼ぶ.

(4) m>1 とする. $\mathbb{Z}/m\mathbb{Z}$ は次の和と積に関して可換環となる.

$$\overline{x} + \overline{y} := \overline{x + y}, \quad \overline{x} \cdot \overline{y} := \overline{xy}$$

命題 6.2. R を環とする. R の任意の元 $a,b,c \in R$ について, 以下が成り立つ.

- (1) $a \cdot 0_R = 0_R = 0_R \cdot a$.
- (2) $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$.
- $(3) (-a) \cdot (-b) = a \cdot b.$

証明. (1) $a \cdot 0_R = a \cdot (0_R + 0_R) = a \cdot 0_R + a \cdot 0_R$ である. このとき, 等式 $a \cdot 0_R = a \cdot 0_R + a \cdot 0_R$ 両辺に $a \cdot 0_R$ の和に関する逆元 $-a \cdot 0_R$ を加えれば $0_R = a \cdot 0_R$ が示された. 同様にして $0_R \cdot a = 0_R$ も得られる.

(2) 示すことは $(-a) \cdot b$ が $a \cdot b$ の和に関する逆元であることである. ここで

$$(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0_R \cdot b = 0_R$$

を得る. よって, $(-a) \cdot b = -(a \cdot b)$ である. 同様にして, $a \cdot (-b) = -(a \cdot b)$ である.

 $(3) (-a) \cdot (-b) + a \cdot (-b) = (-a+a) \cdot (-b) = 0_R \cdot (-b) = 0_R$ なので、 $-a) \cdot (-b)$ は $a \cdot (-b)$ の和に関する逆元である。逆元の一意性から $(-a) \cdot (-b) = a \cdot b$ である。

特に, $R = \mathbb{Z}$ で a = b = 1 とすれば, $(-1) \cdot (-1) = 1$ を得る.

レポート 6-1 $i=\sqrt{-1}$ を虚数単位として、行列 E,I,J,K を以下で定める.

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

このとき, 以下を示せ.

- (1) $I^2 = J^2 = K^2 = -E$ を示せ.
- (2) IJ = -JI = K, JK = -KJ = I, KI = -IK = J を示せ.
- (3) $R := \{aE + bI + cJ + dK \mid a, b, c, d \in \mathbb{R}\}$ は環でであることを示せ.
- (4) A = aE + bI + cJ + dK を零行列でないとする. A の逆元が

$$\frac{1}{a^2 + b^2 + c^2 + d^2} (aE - bI - cJ - dK)$$

で与えられることを示せ. 従って, R は斜体となるが, これを Hamilton **の四元数体** と呼ぶ.

次の主張はエルガマル暗号の基礎部分を支えている主張である.

定理 6.3. p>1 であるとする. $\mathbb{Z}/p\mathbb{Z}$ が体であるための必要十分条件は p が素数となることである.

<u>**証明**</u>. **(必要条件)** 対偶を示す。つまり、p が素数でないとき、 $\mathbb{Z}/p\mathbb{Z}$ が体ではないことを示す。p が素数ではないとすれば、p は合成数である。つまり、1 < x, y < p なる整数 $x, y \in \mathbb{Z}$ で p = xy とかける。このとき、 $\overline{xy} = \overline{p} = \overline{0}$ である。さて、背理法によって $\mathbb{Z}/p\mathbb{Z}$ が体でないことを示そう。 $\mathbb{Z}/p\mathbb{Z}$ が体であるとすれば、 \overline{x} に逆元 $\overline{x^{-1}}$ が存在する。 $\overline{xy} = \overline{0}$ の左から $\overline{x^{-1}}$ をかけると $\overline{y} = \overline{0}$ を得るが、これは矛盾である。以上で $\mathbb{Z}/p\mathbb{Z}$ が体ではない。

(十分条件) p を素数とする. 0 < m < p であるような $m \in \mathbb{Z}$ に対して $\overline{m} \in \mathbb{Z}/m\mathbb{Z}$ が逆元を持つことを示せばよい. m と p は互いに素なので、Euclid の互除法によって

$$xm + yp = 1$$

となるような整数 $x,y\in\mathbb{Z}$ が取れる. 従って, $\overline{1}=\overline{xm+yp}=\overline{xm}$ となる. よって \overline{x} は逆元をもったので $\mathbb{Z}/m\mathbb{Z}$ は体である.

● 6-2: 可換環のイデアル

環 $\mathbb Z$ の部分群 $m\mathbb Z$ は正規部分群であって、剰余群 $\mathbb Z/m\mathbb Z$ が構成された。さらに、 $\mathbb Z/m\mathbb Z$ は環という数学的構造をもった、そこでこれを一般化して、環 R の何かしらの部分群 I をもって新しく環 R/I を作ることを考えよう。

定義 6.4. 可換環 R のアーベル群としての部分群 I が R の イデアル とは, 次の条件を満たすときをいう.

(ID) 任意の $r \in R$ と任意の $x \in I$ に対して $rx \in I$ である.

例 6-2 (1) 整数全体のなす環 \mathbb{Z} の部分群 $m\mathbb{Z}$ はイデアルとなる.

- (2) 環Rに対して、 $\{0\}$ およびR自身はRのイデアルとなる. これをRの 自明なイデアル という.
- (3) 多項式環 k[X] と $f(X) \in k[X]$ に対して、

$$(f(X)) := \{ f(X)g(X) \mid g(X) \in k[X] \}$$

(4) 可換環 R の任意の元 a に対して、

$$aR = \{ax \mid x \in R\}$$

とおいたものを, \underline{a} によって生成される単項イデアル と呼ぶ. これを (a) で表す. (3) にあった (f(X)) は f(X) によって生成される単項イデアルである.

<u>**命題**</u> **6.5.** 環 \mathbb{Z} のイデアルはすべて単項イデアルとなる. つまり, \mathbb{Z} の任意のイデアル I に対して, ある $n \in \mathbb{Z}$ が存在して, I = (n) とできる.

証明. 環 \mathbb{Z} の任意のイデアル I をとる. $I = \{0\}$ ならば, **命題 6.2** より I = (0) であり, これは単項イデアルである. そこで, 以下, $I \neq (0)$ と仮定する. 任意にゼロでない $a \in I$ をとれば, $-a = (-1)a \in I$ なので a > 0 と仮定しても良い.

まず, $a_0\in I$ を, I に含まれる整数の中で最小の整数であるものをとる。すると, $I=(a_0)$ となる。これを証明しよう。イデアルの定義より, $a_0\in I$ だから任意の整数 $k\in\mathbb{Z}$ に対して $ka_0\in I$ である。従って $(a_0)\subset I$ である。逆に, 任意に $x\in I$ をとると, ある整数 $q,r\in\mathbb{Z}$ が存在して

$$x = qa_0 + r \quad (0 \le r \le a_0 - 1)$$

とできる.このとき, $r=x-qa_0$ であって, $x,a_0\in I$ だから $r\in I$ である.ところで, $r\neq 0$ ならば, a_0 の最小性に矛盾する.よって r=0 となり, $x=ka_0\in (a_0)$ である.以上で, $\mathbb Z$ の任意のイデアルは単項イデアルとなることがわかった.

命題 6.6. 可換環 R が体である必要十分条件は, R のイデアルが自明なイデアルのみであることである.

証明. (必要条件): R を体として,I を R のイデアルとする. $I=\{0\}$ でないと仮定しよう.このとき,I=R であることを示す. $I\subset R$ は自明なので, $R\subset I$ を示せば良い.零元でないような任意の元 $a\in I$ をとる. R は 体なので,a の逆元 $a^{-1}\in R$ がとれる. I はイデアルなので, $aa^{-1}=1\in I$ である.ここで,任意に $r\in R$ をとれば,I はイデアルなので, $r=r\cdot 1\in I$ となり R=I が示された.以上で R には自明なイデアルしか存在しない.

(十分条件):R の零元でないような任意の元 $r \in R$ をとり、これに逆元があることを示す. $r \neq 0$ であるから、r によって生成される単項イデアル $\langle r \rangle \neq \{0\}$ である. R は自明なイデアルしかもたないので、 $\langle r \rangle = R$ である. よって、 $1 \in \langle r \rangle$ だから、ある元 $s \in R$ が存在して rs = 1 とできる. よって r が逆元をもったので、R は体である.

● 6-3: 剰余環

可換環 R とそのイデアル I を考える. このとき, R 上の同値関係 \sim を

$$x \sim y \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad x - y \in I$$

で定める. (これが同値関係になることは、各自で確かめよ.)この同値関係による商集合を R/I とかく. $x \in R$ の同値類を x とかくことにする. 商集合 R/I に和と積を以下で定義しよう.

$$\overline{x} + \overline{y} := \overline{x + y}, \quad \overline{x} \cdot \overline{y} = \overline{xy}$$

この和と積は well defined である. この和と積に関して R/I は可換環となることが確かめられる. これを R の I による **剰余環** と呼ぶ.

レポート 6-2 R/I における和と積が well-defined であり、この和と積に関して環となることを定義に従って示しなさい.

例 6-3 (1) 環 $\mathbb Z$ のイデアルは、ある整数 m で $(m)=m\mathbb Z$ の形をしていた.このとき、剰余群 $\mathbb Z/m\mathbb Z$ は環になっている.

(2) 実数 \mathbb{R} 上の 1 変数多項式環 $\mathbb{R}[X]$ を考える. このとき, $X^2+1\in\mathbb{R}[X]$ によって生成される単項イデアル (X^2+1) を考えよう. このとき, 剰余環 $\mathbb{R}[X]/(X^2+1)$ を考えることができる. すると,

$$\overline{X^2+1}=\overline{0}$$

であるから, $\overline{X}^2=\overline{-1}$ が得られる. つまり, \overline{X} に関して 2 次以上の項は次数を下げて, 1 次以下にすることができるので

$$\mathbb{R}[X]/(X^2+1) = {\overline{a} + \overline{bX} \mid a, b \in \mathbb{R}, \overline{X}^2 = \overline{-1}}$$

と表せる.

さて、写像 $f: \mathbb{R}[X] \longrightarrow \mathbb{C}$ を

$$f(a_0 + a_1X + a_2X^2 + \dots + a_nX^n) := a_0 + a_1i + a_2i^2 + \dots + a_ni^n$$

で定義する. つまり, X=i を代入する写像である. このとき, $n \le m$ として

$$f\left(\sum_{k=0}^{n} a_k X^k + \sum_{k=0}^{m} b_k X^k\right) = f\left(\sum_{k=0}^{n} (a_k + b_k) X^k\right)$$
$$= \sum_{k=0}^{n} (a_k + b_k) i^n = \sum_{k=0}^{n} a_k i^k + \sum_{k=0}^{m} b_k i^k = f\left(\sum_{k=0}^{n} a_k X^k\right) + f\left(\sum_{k=0}^{m} b_k X^k\right)$$

であるので, f は群準同型写像である. 任意に $a+bi\in\mathbb{C}$ をとれば, f(a+bX)=a+bi なので, f は全射である. つまり, $\operatorname{im}(f)=\mathbb{C}$ である. 従って, 準同型定理**定理 5.6** から群の同型

$$\mathbb{R}[X]/\mathsf{ker}(f) \simeq \mathsf{im}(f) = \mathbb{C}$$

である.ここで、 $\ker(f)=(X^2+1)$ であることを確認しよう.任意に $g(X)\in\ker(f)$ をとる.g(X) を X^2+1 で割ると、除法の定理から、

$$g(X) = h(X)(X^2 + 1) + a + bX, \quad h(X) \in \mathbb{R}[X], \ a, b \in \mathbb{R}$$

とできる. このとき,

$$0 = f(q(X)) = q(i) = h(i)(i^{2} + 1) + a + bi = a + bi$$

であるので、a+bi=0. よって、a=b=0 を得るので、 $g(X)=h(X)(X^2+1)$ となる. すなわち、 $g(X)\in (X^2+1)$ であるので、 $\ker(f)\subset (X^2+1)$ である. 逆に、任意に $g(X)\in (X^2+1)$ をとれば、 $g(X)=h(X)(X^2+1)$ となるような $h(X)\in \mathbb{R}[X]$ が存在する.このとき、

$$f(g(X)) = g(i) = h(i)(i^2 + 1) = h(i)(-1 + 1) = 0$$

であるから、 $g(X) \in \ker(f)$ となる.よって、 $(X^2+1) \subset \ker(f)$ である.以上で $\ker(f) = (X^2+1)$ である.よって、

$$\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$$

を得る. このようにして、複素数 ℂ は実数上の多項式環の剰余環として実現されるのである.